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Abstract

Inferring types for polymorphic recursive function definitions (abbreviated to poly-
morphic recursion) is a recurring topic on the mailing lists of popular typed pro-
gramming languages. This is despite the fact that type inference for polymorphic
recursion using ∀-types has been proved undecidable. This report presents sev-
eral programming examples involving polymorphic recursion and determines their
typability under various type systems, including the Hindley-Milner system, an
intersection-type system, and extensions of these two. The goal of this report is
to show that many of these examples are typable using a system of intersection
types as an alternative form of polymorphism. By accomplishing this, we hope to
lay the foundation for future research into a decidable intersection-type inference
algorithm.

We do not provide a comprehensive survey of type systems appropriate for poly-
morphic recursion, with or without type annotations inserted in the source language.
Rather, we focus on examples for which types may be inferred without type anno-
tations, with an emphasis on systems of intersection-types.
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1 Introduction

Background and Motivation

Type inference in the presence of polymorphic recursion using ∀-types (the
familiar “type schemes” of SML) is undecidable
[10,11,4]. Attempts to work around this limitation include explicit type anno-
tations by the user [8] and user-tunable iteration limits [17]. However, both of
these approaches require the programmer to be actively engaged in the type
checking process, thereby defeating the goal of automatic type inference and
transparent type checking. There is also an implementation of SML that al-
lows the user to switch between the standard type system (which is restricted
to monomorphic recursion) and a type system augmented with polymorphic
recursion using ∀-types, in an attempt to prove that “hard” examples of poly-
morphic recursion do not arise in practice [1]. Yet, practical examples of
programs requiring polymorphic recursion continually appear in discussions
on the mailing lists of programming languages such as SML, Haskell, and
OCaml.

Contribution of the Report

This document attempts to lay the foundation for further research into the
typability of implicit polymorphic recursion by discussing several examples
which fail to type under the standard type system of SML – also called the
Hindley-Milner system. The examples are written (mostly) in SML syntax
(one example is presented in Haskell syntax) and are accompanied by the
corresponding error found by the SML/NJ type checker. A few of the examples
are also shown in Haskell syntax with its corresponding GHC error message
for the side purpose of comparing the error reporting of the SML/NJ and
GHC compilers.

We also discuss examples which remain untypable using the Hindley-Milner
system augmented with polymorphic recursion with ∀-types – also called the
Milner-Mycroft system – but are typable using an intersection-type system.
These examples support the use of intersection types as an alternative to ∀-
types to represent polymorphism.

In addition, we elucidate the need for what we call “infinite-width” inter-
section types by examples. However, we do not extend our standard (finite-
width) intersection type system in this way, because we do not know a straight-
forward extension of the standard system and developing one is beyond the
scope of this report. Consequently, we resort to polymorphic recursion with
∀-types for these examples; i.e., we present examples which are not typable
using our intersection-type system, but are with ∀-types. An example is also
given which requires both intersection types and ∀-types. Lastly, we present
a polymorphic recursive program that is not typable with either intersection
types or ∀-types.
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Organization of the Report

The paper is organized as follows. First we define the types that we deal with,
and then we present the rules of several type systems we consider later in the
report, starting with the Hindley-Milner system which we here denote HM;
this is done in Section 2. In the remaining sections, we introduce several simple
and natural examples of polymorphic recursion to motivate the augmentation
of system HM. We develop type systems that allow polymorphic recursion
using only ∀-types (HM∀), only intersection types (S), and both universal and
intersection types (S∀). Using these systems we show that we can construct
valid typing derivations for most examples. The following chart summarizes
the typability of the examples developed in this report with respect to the
four type systems we define. 3 The last column in the chart, with the heading
“Minor Alteration”, indicates whether an example can be “easily” altered to
make it typable under system HM.

Example HM HM∀ S S∀ Minor Alteration

Double X X X X

Mycroft X X X X

Sum List X X X X

Composition X X X X

Compiler Pass X X X X

Confusing X X X

Matrix Transpose X X X

Vector Addition X X X

Collect X X

Bar X X

Construct List X

Delay

The above table is a little misleading in the following respect. The table
indicates that certain examples are typable in our system of intersection types
(S) but not in our system of ∀-types (HM∀). Whereas HM∀ restricts ∀-
quantifiers to appear only in the outermost position of type expressions, S
imposes no similar restriction on occurrences of ∧ in type expressions. See
Section 8 for further discussion of this matter.

3 System S is called “S” for lack of a better name.
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Related Work

For other examples of polymorphic recursive programs, specifically nested re-
cursive data types similar to the Collect example, see Chris Okasaki’s book [16].
Simon Peyton-Jones and Mark Shields have written a paper describing the ap-
proach taken by GHC when inferring arbitrary high rank types via explicit
user-defined type annotations [9].

Future Work

In the future we plan to explore the possibility of a decidable (and hopefully
feasible) type inference and checking algorithm for a system of intersection
types under which most, if not all, of the examples in this report can be typed.
We would also like to investigate whether introducing expansion variables, a
technology developed in conjunction with System I, into our intersection type
system will yield any benefits [14].

Acknowledgments

Joe Wells was a continual source of encouragement and technical advice. We
would also like to thank Simon Peyton-Jones for his valuable feedback, par-
ticularly with regards to high-rank ∀-types.

2 Types and Type Systems

The syntax of types is specified by the following grammar:

τ ∈ Type ::= α | τ → τ | τ × τ | τ list | τ ∧ τ | int | bool | . . .

σ ∈ Scheme ::= τ | ∀α.σ

Note that we use τ as a metavariable ranging over the set Type which com-
prises simple types combined with intersection types, and σ as a metavariable
ranging over the set Scheme which comprises all members of Type each pre-
ceded by zero or more ∀ quantifiers. In particular, Type is a proper subset of
Scheme.

We list the four different type systems considered in the rest of the report.
The basic type system, HM, is analogous to the type system of SML, Haskell,
and OCaml, which allows let-polymorphism and only monomorphic recursion.
System HM∀ is an extension of system HM that allows polymorphic recursion
with ∀-types, and ∀-types in general as long as the ∀ quantifiers are outside all
type constructors. System S allows intersection types; S provides polymorphic
recursion via intersection types. The last system that we develop is called S∀.
System S∀ allows intersection types and ∀-types together; S∀ also requires
that ∀ quantifiers are kept outside all type constructors.

We now outline the conventions for reading the following tables. We as-
sume there exists a function, type, from term constants to types, such that
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the type(c) is the type of constant c. We use ∆ as a context in our typing
judgement. ∆ is a sequence of bindings between term variables and types.
However, we also allow ∆ to act as a function from term variables to types,
such that ∆(x) is the type bound to variable x. Lastly, we use the function
FTV from contexts to sets of type variables, such that FTV(∆) is the set of
free type variables that occur in context ∆. First we define system HM.

System HM Typing Rules: (all types are ∧-free)

type(c) = σ

∆ ` c : σ
(∀-Const)

(σ closed)

∆(x) = σ

∆ ` x : σ
(∀-Var)

∆, x : τ ` M : τ ′

∆ ` fn x => M : τ → τ ′
(Abs) ∆ ` M : τ → τ ′ ∆ ` N : τ

∆ ` MN : τ ′
(App)

∆ ` M : σ ∆, x : σ ` N : τ

∆ ` let x = M in N end : τ
(∀-Let)

∆, x1 : τ1, . . . , xn : τn ` N : τ
∆, x1 : τ1, . . . , xn : τn ` Mp : τp

∆ ` let val rec x1 = M1 and . . .
and xn = Mn in N end : τ

(Rec)

(1 ≤ p ≤ n)

∆ ` M : σ
∆ ` M : ∀α.σ

(Gen)
(α 6∈ FTV(∆))

∆ ` M : ∀α.σ
∆ ` M : σ[α := τ ]

(Inst)

∆ ` M1 : τ1 ∆ ` M2 : τ2

∆ ` (M1, M2) : τ1 × τ2
(×)

∆ ` M : τ1 × τ2

∆ ` fst(M) : τ1
(Fst)

∆ ` M : τ1 × τ2

∆ ` snd(M) : τ2
(Snd)

∆ ` M1 : bool ∆ ` M2 : τ ∆ ` M3 : τ
∆ ` if M1 then M2 else M3 : τ

(If)

To define system HM∀ we simply augment HM with the rule (∀-Rec).
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System HM∀ Typing Rules: (all types are ∧-free)

All the typing rules of system HM are typing rules of system HM∀ in

addition to the following.

∆, x1 : σ1, . . . , xn : σn ` N : τ
∆, x1 : σ1, . . . , xn : σn ` Mp : σp

∆ ` let val rec x1 = M1 and . . .
and xn = Mn in N end : τ

(∀-Rec)

(1 ≤ p ≤ n)

Note that we allow both rules (∀-Rec) and (Rec) to co-exist within system
HM∀. This is acceptable because (Rec) is simply a special case of (∀-Rec).
System S uses only intersection types.
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System S Typing Rules: (all types are ∀-free)

type(c) = τ

∆ ` c : τ
(∧-Const)

(τ closed)

∆(x) = τ

∆ ` x : τ
(∧-Var)

∆, x : τ ` M : τ ′

∆ ` fn x => M : τ → τ ′
(Abs) ∆ ` M : τ → τ ′ ∆ ` N : τ

∆ ` MN : τ ′
(App)

∆ ` M : τ ′ ∆, x : τ ′ ` N : τ

∆ ` let x = M in N end : τ
(∧-Let)

∆, x1 : τ1, . . . , xn : τn ` N : τ
∆, x1 : τ1, . . . , xn : τn ` Mp : τp

∆ ` let val rec x1 = M1 and . . .
and xn = Mn in N end : τ

(∧-Rec)

(1 ≤ p ≤ n)

∆ ` M1 : τ1 ∆ ` M2 : τ2

∆ ` (M1, M2) : τ1 × τ2
(×)

∆ ` M : τ1 × τ2

∆ ` fst(M) : τ1
(Fst)

∆ ` M : τ1 × τ2

∆ ` snd(M) : τ2
(Snd)

∆ ` M : τi i ∈ I
∆ ` M : ∧i∈I τi

(∧)
(size(I) ≥ 2), (size(I) is finite)

∆ ` M : τ τ ≤ τ ′

∆ ` M : τ ′
(Sub)

τ ≤ τ
(S-Refl)

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
(S-Trans)

τ1 ≤ τ ′1 τ ′2 ≤ τ2

τ ′1 → τ ′2 ≤ τ1 → τ2
(S-Fun)

τ ′1 ≤ τ1 τ ′2 ≤ τ2

τ ′1 × τ ′2 ≤ τ1 × τ2
(S-Pair)

τi ≤ τ ′i i ∈ I I ⊆ J

∧i∈J τi ≤ ∧i∈I τ ′i
(S-∧)
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This system has been proved sound. The proof can be found in appendix B.
Lastly, we define system S∀.

System S∀ Typing Rules:

All the typing rules of system S are typing rules of system S∀ in

addition to the following.

type(c) = σ

∆ ` c : σ
(∀-Const)

(σ closed)

∆(x) = σ

∆ ` x : σ
(∀-Var)

∆ ` M : σ ∆, x : σ ` N : τ

∆ ` let x = M in N end : τ
(∀-Let)

∆, x1 : σ1, . . . , xn : σn ` N : τ
∆, x1 : σ1, . . . , xn : σn ` Mp : σp

∆ ` let val rec x1 = M1 and . . .
and xn = Mn in N end : τ

(∀-Rec)

(1 ≤ p ≤ n)

∆ ` M : σ
∆ ` M : ∀α.σ

(Gen)
(α 6∈ FTV(∆))

∆ ` M : ∀α.σ
∆ ` M : σ[α := τ ]

(Inst)

Note that (∧-Const), (∧-Var), (∧-Let), and (∧-Rec) in system S are special
cases of (∀-Const), (∀-Var), (∀-Let), and (∀-Rec) in system S∀.

3 Typable in HM∀ and S

3.1 Double

3.1.1 Double - Coupled

The following is a simple example that exposes the untypability of polymorphic
recursion in SML.

let val rec double = fn f => fn y => f (f y)

and foo = fn v => double (fn x => x + 1) v

and goo = fn w => double Math.sqrt w

in (foo 3, goo 16.0) end

SML Type Checker Reports:

Error: operator and operand don’t agree [literal]

operator domain: real -> real
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operand: int -> int

in expression:

double (fn x => x + 1)

The definitions of double, foo, and goo are mutually recursive. Therefore
the calls to double within the definition of foo and goo are recursive calls.
Hence, the Hindley-Milner typing derivation breaks down with the realization
that each of these recursive calls is on an argument of a different type.

This example is not typable under system HM. However, we can use
either HM∀ or S to type it. Using HM∀ we can write a typing derivation for
this example, where the final types assigned are:

double : ∀α.(α → α) → α → α

foo : int → int

goo : real → real.

Using S we can also type this example. If double is given the following
intersection type:

((int → int) → int → int) ∧ ((real → real) → real → real)

then the call to double within the body of foo would be able to utilize the
first component of the intersection type and the call to double within the
body of goo would be able to use the second component. We hold off on a
typing derivation in S until the next, more complicated, example.

3.1.2 An Aside: SML/NJ vs. GHC

As an aside we translate a couple of the examples in this report into Haskell
syntax and compare the SML/NJ error messages with the GHC error mes-
sages (which uses Algorithm M in contrast to Algorithm W of SML/NJ - for
more discussion see [3]). We choose to translate only those examples which
will yield an interesting and different error message. Most of the following
examples, when translated, offer error messages that are very similar to the
SML/NJ error messages, but differ occasionally in the program location which
the compiler targets as problematic. This example, when translated, is no dif-
ferent.

intFunc :: Int -> Int

intFunc x = x + 1

doubleFunc :: Double -> Double

doubleFunc x = sqrt x

myPair = let (double, foo, goo) =

(\f -> \y -> f (f y),

\v -> double intFunc v,
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\w -> double doubleFunc w)

in (foo 3, goo 16.0)

GHC Type Checker Reports:

Couldn’t match ‘Double’ against ‘Int’

Expected type: Int -> Int

Inferred type: Double -> Double

In the first argument of ‘double’, namely ‘doubleFunc’

In a lambda abstraction: \ w -> double doubleFunc w

Both the SML/NJ and the GHC compiler detect the same error but SML/NJ
assigns the type:

double : (real → real) → real → real,

while GHC assigns the type:

double : (int → int) → int → int.

Although this difference is not enormous, it does show an operational disparity
between the two compilers.

3.1.3 Double - Uncoupled

The problem exhibited in the double example above can be alleviated by a
technique that we call “uncoupling”. Namely, we make use of the Hindley-
Milner let-polymorphism by removing double from the mutual recursive defi-
nition and defining it in an outer let.

let val double = fn f => fn y => f (f y)

in let val rec foo = fn v => double (fn x => x + 1) v

and goo = fn w => double Math.sqrt w

in (foo 3, goo 16.0) end

end

SML Type Checker Reports:

No Errors

3.2 Mycroft

3.2.1 Mycroft - Coupled

The following is the canonical example of polymorphic recursion as discovered
by Alan Mycroft [15].

let val rec myMap = fn f => fn l =>

if (null l)

then l

else cons (f(hd l)) (myMap f (tl l))

and sqList = fn l => myMap (fn (x:int) => x * x) l
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and compList = fn l => myMap not l

in (sqList [2,4], compList [true,false]) end

SML Type Checker Reports:

Error: operator and operand don’t agree [tycon mismatch]

operator domain: bool -> bool

operand: int -> int

in expression:

myMap (fn x : int => x * x)

As before, we have three mutually recursive function definitions and two recur-
sive calls with arguments of different types. This example, though untypable
in system HM, can be typed in a system of polymorphic recursion with ∀-
types or intersection types. To witness this either system must be able to
handle lists. For the purposes of brevity we will consider hd, tl, cons, and
nil to all be primitive constants within our language. With these constants
we will be able to handle expressions with list types. Also, we note that the
expressions [1,2] and [true, false] are simply syntactic sugar for

cons 1 (cons 2 nil) and cons true (cons false nil) respectively. We
are now able to assign the following types under HM∀:

myMap : ∀α.∀β.(α → β) → α list → β list

sqList : int list → int list

compList : bool list → bool list.

With S we can assign the following rank-1 types:

myMap : ((int → int) → int list → int list) ∧
((bool → bool) → bool list → bool list)

sqList : int list → int list

compList : bool list → bool list.

In both systems the final type assigned to Mycroft’s example is:

int list× bool list.

For the full typing derivation under S see appendix A.

3.2.2 Mycroft - Uncoupled

As before, uncoupling is possible. This is shown in a slightly different form
below.

let val rec myMap = fn f => fn l =>

if (null l)

then l

else cons (f(hd l)) (myMap f (tl l))
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val rec sqList = fn l => myMap (fn x => x * x) l

and compList = fn l => myMap not l

in (sqList [2,4], compList [true,false]) end

SML Type Checker Reports:

No Errors

3.3 Sum List

The example below finds the sum of the elements of a list, but also applied
the polymorphic identity function to each element and sublist in the process.
The idea here is that we may want to record some information about each
element and its corresponding sublist (possibly via side effects).

let val rec id = fn x => x

and sumList = fn l =>

if (null l)

then 0

else (id (hd l)) + (sumList (id (tl l)))

in sumList [1,2,3] end

SML Type Checker Reports:

Error: operator and operand don’t agree [circularity]

operator domain: ’Z

operand: ’Z list

in expression:

id (tl l)

Using HM∀ we assign the following types:

id : ∀α.α → α

sumList : int list → int.

Using S we assign the following types:

id : (int → int) ∧ (int list → int list)

sumList : int list → int.

The final type assigned to this example is: int. This example can be uncoupled
in the same way as the previous two examples. A natural question at this point
would be to ask why id needs to be defined mutually recursive to sumList. To
avoid such a question we could pass id as an argument to sumList and then
motivate this move by demonstrating a need to pass two different functions to
sumList. We show this for the Matrix Transpose example so we do not show
it here.
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3.4 Isomorphic Compositions

This example uses the composition function as the polymorphic recursive func-
tion. The order of two composed functions are switched and applied to differ-
ent arguments. The results of both applications are then compared.

let val createList = fn x => [x]

val removeList = fn l => hd l

val rec comp = fn f => fn g => f o g

and appComp = fn v1 => fn v2 =>

(comp removeList createList v1) =

hd (comp createList removeList v2)

in appComp 5 [5] end

SML Type Checker Reports:

Error: operator and operand don’t agree [circularity]

operator domain: ’Z list -> ’Z

operand: ’Z list -> ’Z list list

in expression:

comp createList

Using HM∀ we assign the following types:

createList : int → int list

removeList : int list → int

comp : ∀α.∀β.∀η.(β → η) → (α → β) → α → η

appComp : int → int list → bool.

Using S we assign the following types:

createList : int → int list

removeList : int list → int

comp : ((int → int list) → (int list → int) → int list → int list) ∧
((int list → int) → (int → int list) → int → int)

appComp : int → int list → bool.

In both systems the final type assigned to this example is: bool. This example
can also be uncoupled.

3.5 Compiler Pass

This example is very similar to the previous examples and is due to Simon
Peyton Jones [6,7], who states that this is a program that he “really wanted to
write”. The author was writing a compiler pass which made use of two data
types and three functions written in continuation passing style. It is presented
in Haskell syntax.
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data Exp = Let Bind Exp

data Bind = MkBind String Exp

doBinds (b:bs) = doBindAndScope b (\b’ -> b’ : doBinds bs)

doExp (Let b e) = doBindAndScope b (\b’ -> Let b’ (doExp e))

doBindAndScope (MkBind s e) cont = cont (MkBind s (doExp e))

GHC Type Checker Reports:

Couldn’t match ‘[Bind]’ against ‘Exp’

Expected type: [Bind]

Inferred type: Exp

In the application ‘doBinds bs’

In the second argument of ‘(:)’, namely ‘doBinds bs’

The trouble with this program is that doExp and doBindAndScope are defined
mutually recursive to one another. This means that the call to doBindAndScope
is a recursive call and can not be polymorphic. However, doBinds and doExp

each call doBindAndScope with arguments of different types. The author goes
on to describe a way to alleviate this problem by encapsulating the polymor-
phism inside a data type structure and adding constructors to the arguments
of doBindAndScope. However, he points out that this fix is not only “obscure”,
but also “inefficient at runtime”.

This example can be typed by either HM∀ or S. Under system HM∀ we
can assign the following types:

doBinds : Bind list → Bind list

doExp : Exp → Exp

doBindAndScope : ∀α.Bind → (Bind → α) → α.

Under system S we can assign these types:

doBinds : Bind list → Bind list

doExp : Exp → Exp

doBindAndScope : (Bind → (Bind → Bind list) → Bind list) ∧
(Bind → (Bind → Exp) → Exp).

Besides the method for alleviating this example already discussed, we can
uncouple this program in the usual way.

3.6 Confusing

3.6.1 Confusing - Unalleviated

The following example is not very intuitive but serves a purpose.
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let val rec f = fn n => fn x => fn y =>

if x > y orelse n = 0

then n

else if n >= 100

then if n < 200

then n

else f (n div 2) (x * y) y

else if x < y

then f (n*n) 0.03 1.0

else f (n*n) 1 1

in f 3 5 6 end

SML Type Checker Reports:

Error: operator and operand don’t agree [literal]

operator domain: real

operand: int

in expression:

(f (n * n)) 1

Error: operator and operand don’t agree [literal]

operator domain: real

operand: int

in expression:

(f 3) 5

This example requires the second and third arguments of f to be of types
int and real. The example makes use of the overloaded operators <, >, and *
which are defined for both these types. Notice that if we give f the appropriate
type then this example is well-typed within both HM∀ and S.

Under HM∀ we assign the following type:

f : ∀α.int → α → α → int.

Under S we assign the following type:

f : (int → int → int → int) ∧ (int → real → real → int).

In both systems, the final type assigned to the example is: int.

This example differs from all the previous examples. The preceding exam-
ples all make use of a polymorphic function that is defined mutually recursive
to another function. The polymorphic function is then used twice on argu-
ments of different types. This example is designed to show that it is possible
to define a polymorphic recursive function that is inherently so, without the
aid of an external polymorphic function. As a result, this example is diffi-
cult to alleviate. In the next sections we will see other polymorphic recursive
functions that share this same property but are impossible to type without
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extensions to HM∀ and S.

3.6.2 An Aside: SML/NJ vs. GHC

It is worth noting that when translated into Haskell syntax this example can
be typed by the GHC compiler. The reason for this is that the GHC compiler
converts the integers in this example to doubles and assigns the following type:

f : double → double → double → double.

3.6.3 Confusing - Alleviated

We can alleviate this example by duplication. Consider the following program.

let val rec f1 = fn n => fn x => fn y =>

if x > y orelse n = 0

then n

else if n >= 100

then if n < 200

then n

else f1 (n div 2) (x * y) y

else if x < y

then f2 (n*n) 0.03 1.0

else f1 (n*n) 1 1

and f2 = fn n => fn x => fn y =>

if x > y orelse n = 0

then n

else if n >= 100

then if n < 200

then n

else f2 (n div 2) (x * y) y

else if x < y

then f2 (n*n) 0.03 1.0

else f1 (n*n) 1 1

in f1 3 5 6 end

This program is now typable under HM. We can assign the following types:

f1 : int → int → int → int

f2 : int → real → real → int.

However, alleviating the example in this way differs from all the previous
attempts in that we must duplicate the entire program. Since duplication
defeats the purpose of polymorphism this alteration cannot be recommended.
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4 Typable in S Only

4.1 Matrix Transpose

4.1.1 Matrix Transpose - Unalleviated

This examples shows a concise and elegant formulation of the matrix transpose
operation.

let val map1 = map

val rec map2 = fn f => fn l =>

if (null l)

then nil

else if (null (hd l))

then nil

else cons (f hd l) (map2 f (f tl l))

in map2 map1 [[1,2],[3,4]] end

SML Type Checker Reports:

Error: operator and operand don’t agree [circularity]

operator domain: ’Z list -> ’Z

operand: ’Z list -> ’Z list

in expression:

f tl

This example, unlike the previous examples, cannot be typed by polymor-
phic recursion with ∀-types. The problem arises when trying to type the first
argument to map2, f. To see this, we need only look at the else-branch of the
nested if-expression.

Notice that from cons (f hd l) (map2 f (f tl l)) the type of the first
occurrence of f must be of the form:

f : (α list → α) → α list list → α list.

Yet, the second occurrence of f requires the form:

f : (α list → α list) → α list list → α list list.

Thus, f must have a polymorphic type. However, since we restrict ∀-quantifiers
to be only on the outer most portion of the type, a ∀-type for map2 is impos-
sible.

Fortunately, using S we are able to assign this example a rank-2 type:

map1 : ((int list → int) → int list list → int list) ∧
((int list → int list) → int list list → int list list)

map2 : (((int list → int) → int list list → int list) ∧
((int list → int list) → int list list → int list list))

→ int list list → int list list.
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The final type assigned to this example is: int list list.

An objection made in a preliminary presentation of this work is that this
example (Matrix Transpose) and the next (Vector Addition) are not cases of
truly polymorphic recursive functions, because the polymorphism is not at
the outermost position of the type expression, as in the previous examples.
However, such a definition of polymorphic recursion is arguably too restrictive,
as it disallows function types whose argument type (i.e., expressions to the
left of the arrow constructor) are polymorphic.

4.1.2 Matrix Transpose - Alleviated

Similar to the previous example, uncoupling is impossible. However, we can
side-step this dilemma with another crafty trick.

let val map1 = map

val rec map2 = fn f1 => fn f2 => fn l =>

if (null l)

then nil

else if (null (hd l))

then nil

else cons (f1 hd l)

(map2 f1 f2 (f2 tl l))

in map2 map1 map1 [[1,2],[3,4]] end

SML Type Checker Reports:

No Errors

By simply passing the map2 function two different map1 functions so that
each one is used with only one type, our example becomes typable. Although,
this technique yields a well-typed program the process for transforming unty-
pable polymorphic recursive programs has become ad-hoc. No longer, can the
programmer use a simple uncoupling scheme. Instead, the programmer must
come up with, possibly very complex, fixes for each circumstance. A better
programming language would not require these efforts from the programmer,
but rather allow the program to be typed as the programmer wrote it. With
this as our goal we reject the alleviated example as our ultimate solution and
determine to type the original, unalleviated example.

As an alternative alleviation, one could simply remove the first argument,
f, of map2 and replace each f in the body of map2 with the standard map

function. However, there may be cases where passing map1 as an argument is
advantageous. To motivation this suppose the following. Given a matrix M ,
one wishes to calculate the pair (5 ×MT, MT). This could easily be done in
the following way.

let val map1 = fn f => fn l => map (fn x => 5 * (f x)) l

val rec map2 = fn f => fn l =>

if (null l)

18
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then nil

else if (null (hd l))

then nil

else cons (f hd l) (map2 f (f tl l))

in (map2 map1 [[1,2],[3,4]], map2 map [[1,2],[3,4]]) end

Otherwise, the programmer would have to compute the transpose of M and
separately multiply every element of MT by 5. A program that was imple-
mented in this way would require significant code duplication.

4.2 Vector Addition

This example computes the addition of equal-length vectors represented as
list.

let val addList = fn l => foldr (op +) 0 l

val rec addVecs = fn f => fn l =>

if (null (hd l))

then nil

else cons (addList (f hd l))

(addVecs f (f tl l))

in addVecs map [[1,2,3],[4,5,6]] end

SML Type Checker Reports:

Error: operator and operand don’t agree [circularity]

operator domain: ’Z list -> ’Z

operand: ’Z list -> ’Z list

in expression:

f tl

This example is very similar to the Matrix Transpose example. Just has
before, the f argument of addVecs requires a polymorphic type. However,
since we disallow ∀-quantification within a function type, system HM∀ is not
sufficient to type addVecs.

Again using S we are able to assign this example a rank-2 type:

addList : int list → int

addVecs : (((int list → int) → int list list → int list) ∧
((int list → int list) → int list list → int list list))

→ int list list → int list.

The final type assigned to this example is: int list.

And again, we can alleviate this example using the alternative techniques
to uncoupling described for the Matrix Transpose example alleviation.
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5 Typable in HM∀ Only

5.1 Collect

This example from the ML mailing list was already discussed by Trevor Jim [5].
This function collects all the data from the defined data type and stores them
in a list.

datatype ’a T = EMPTY

| NODE of ’a * (’a T) T

let val rec collect = fn t =>

case t of

EMPTY = nil

| NODE(n,t) =

cons n

(flatmap collect (collect t))

in collect EMPTY end

SML Type Checker Reports:

Error: operator and operand don’t agree [circularity]

operator domain: ’Z T

operand: ’Z T T

in expression:

collect t

Here flatmap is a function similar to the map function. The type of
flatmap is:

flatmap : (α → β list) → α list → β list.

Obviously this example is not typable in HM, however, using system HM∀

we can give this example the following types:

flatmap : ∀α.∀β.(α → β list) → α list → β list

collect : ∀α.α T → α list.

Under system S this example is not typable. To see why let’s try to assign
collect the following reasonable type:

collect : α T → α list.

We have no trouble deriving this type for the Empty-branch of the case-
expression. However, from the program fragment: collect t, of the Node-
branch, collect must have the following type:

collect : α T T → α T list,
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since t has the following type:

t : α T T.

Therefore collect must have a polymorphic type. Unfortunately, using inter-
section types, it is not possible to assign the type:

collect : (α T → α list) ∧ (α T T → α T list),

because when deriving the type α T T → α T list for collect we will require:

collect : α T T T → α T T list.

This cyclic dilemma will continue indefinitely.

If we were to extend system S with infinite width intersection types such
as the following:

collect : ∧i∈N τi+1 → τi list,

where

τi =

{
α if i = 0,

τi−1T otherwise,

then we could derive a typing derivation for this example. However, we since
we do not know how to deal with infinite width intersection types we reject
this idea and resort to system HM∀ and polymorphic recursion with ∀-types.

Uncoupling this examples is impossible.

5.2 BAR

This example is a bit contrived but displays an interesting form of polymorphic
recursion that is impossible to alleviate by uncoupling. Assuming the second
argument to BAR is the f defined in the example, BAR can be understood by
the following mathematical formula:

BAR x (λx.x× 2) Z = Z ∗ 22# of recursive calls

= Z ∗ 22log2(4/x)

.

Below we show the example program.

let val r = fn i => i >= 4

val f = fn i => i * 2

val a = 5

val rec BAR = fn x => fn F => fn Z =>

if r x

then F Z

else BAR (f x) (fn v => fn w => v (v w)) F Z

in BAR 1 f a end
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SML Type Checker Reports:

Error: right-hand-side of clause doesn’t agree with

function result type [circularity]

expression: ((’Z -> ’Z) -> ’Z -> ’Z) ->

(’Z -> ’Z) -> ’Z -> ’Z

result type: ((’Z -> ’Z) -> ’Z -> ’Z) ->

((’Z -> ’Z) -> ’Z -> ’Z) ->

(’Z -> ’Z) -> ’Z -> ’Z

in declaration:

BAR = (fn x => (fn <pat> => <exp>))

Error: operator and operand don’t agree [literal]

operator domain: (’Z -> ’Z) -> ’Z -> ’Z

operand: int -> int

in expression:

(BAR 1) f

This example, much like the previous, requires an infinite width intersec-
tion type. To see why, observe that both sides of the if-expression in the body
of BAR are required to of the same type by the rule (If). Assume, without a
loss of generality, that the arguments to BAR have the following types:

x : int

F : int → int

Z : int.

then the then-branch has type: int. As a result, BAR must have the following
type:

BAR : int → (int → int) → int → int.

Also as a result, the else-branch must have type: int. If this is to occur then
the result of BAR applied to its three arguments in the else-branch must be
type: int → int. This can only happen if the occurrence of BAR within the
else-branch has the following type:

BAR : int → ((int → int) → (int → int)) → (int → int) → (int → int).

Just as we saw in the last example this issue can be resolved if we give BAR
the type:

BAR :(int → (int → int) → int → int) ∧
(int → ((int → int) → (int → int)) → (int → int) → (int → int)).

However, now the rule (∧) requires us to type BAR as both components of
the above intersection. Typing it as the second component will require us to
expand the type of BAR even more. This cycle makes an infinite intersection
type for BAR imperative.
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We will now show such an infinite intersection type. Consider the following
type:

τi =

{
α if i = 0,

τi−1 → τi−1 otherwise.

We can use this to define an infinite intersection type for BAR as follows:

BAR : ∧i∈N int → τi+1 → τi → τi.

However, for the same reasons as before we choose to use ∀-types for this
example. Under HM∀ we assign the following type:

BAR : ∀α.int → (α → α) → α → α.

The final type assigned to this example is: int.

6 Typable in S∀ Only

6.1 Construct List

The following example presents a function, constList, that takes an input x
and a number n. constList then constructs a list of 22n elements, all equal
to x. Here is the program.

let val rec constList = fn x => fn n =>

if (n = 0)

then [x,x]

else cons x

(tl (concat

(constList (constList x (n-1))

(n-1))))

val applyCL = fn l1 => fn l2 => fn f =>

((constList l1 (f l1)),

(constList l2 (f l2)))

in applyCL [1,2,3] [true,false,true] length end

SML Type Checker Reports:

Error: operator and operand don’t agree [circularity]

operator domain: ’Z list list * ’Z list list list

operand: ’Z list list * ’Z list

in expression:

x :: tl (concat ((constList <exp>) (<exp> - <exp>)))

Error: operator and operand don’t agree [literal]

operator domain: _ list list

operand: int list
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in expression:

applyCL (1 :: 2 :: 3 :: nil)

The above program is composed of one main function (constList), and
one auxillary function (applyCL). The applyCM function makes two calls to
constList (one for each input list) after applying an input function to each
input list.

constList is a simple formulation of a function that constructs a list of the
length described above without the use of arithmetical operations to explic-
itly calculate 22n . Notice that a more concise formulation is not immediately
evident.

This example is unique in that it requires both ∀-types and intersection
types. The need for ∀-types stems from the clause:

constList (constList x (n-1)) (n-1)

This statement requires that the result of constList be the same type as the
first argument to constList. Suppose the first argument to constList is of
type α. We also know that the return type of constList must be of type α list
from the then-branch of the conditional. If we try to assign constList the
type: (α → int → α list)∧(α list → int → α list list) then we run into the same
cyclic dilemma that was described in the Collect example. Therefore the type
of constList must be: ∀α.α → int → α list (infinite width intersection types
are another option but, again, we choose ∀-types). Note that this example
uses the same mechanism to require ∀-types as the Collect example. Yet, this
example does not involve a recursive data type as the Collect example does.
Instead this example uses only lists.

The need for intersection types arises when we inspect applyCL. Notice
that we would like f to be a polymorphic argument to applyCL (this because
we apply applyCL to two lists of different types). Since f is an argument it
is impossible assign it a ∀-type since we have restricted our ∀-types such that
quantifiers are not allowed inside a type. Therefore our only option is to assign
f an intersection type.

Under S∀ the following types can be assigned:

constMatrix : ∀α.α → int → α list

applyCL : int list → bool list →
((int list → int list) ∧ (bool list → bool list)) →
(int list list× bool list list)

Uncoupling is not immediately evident for this example due to the fragment
of the constList function that requires a ∀-type.
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6.1.1 An Aside: SML/NJ vs. GHC

We now return to our comparison of SML/NJ and GHC error reporting. The
BAR example, this example, and the following example (Delay) all demon-
strate a difference between the error reporting of the two compilers that we
have not yet seen. Here we show the Haskell translation and GHC error mes-
sage of this example.

constList x 0 = [x,x]

constList x n = (x:(tail (concat (constList

(constList x (n-1))

(n-1)))))

applyCL l1 l2 f = ((constList l1 (f l1)), (constList l2 (f l2)))

GHC Type Checker Reports:

Occurs check: cannot construct the infinite type: a = [a]

Expected type: [[a]]

Inferred type: [a]

In the application ‘constList (constList x (n - 1)) (n - 1)’

In the first argument of ‘concat’, namely

‘(constList (constList x (n - 1)) (n - 1))’

Notice that the error message reported by GHC consists of only one message
while SML/NJ reports two messages. This suggests that GHC may get to
the heart of the error while SML/NJ reports numerous superfluous messages.
On the other hand, perhaps SML/NJ error reporting is more precise, exposing
every relevant error location. Since this is not the main objective of this report
we leave this issue for future inquiry. However, the interested reader is advised
to see [3] for more discussion.

7 Untypable

7.1 Delay Evaluation

The following example shows some of the limitations of polymorphic recursion
using intersection types and ∀-types.

let val delay = fn x => fn () => x

val rec nDelays = fn n => fn x =>

if n=0

then x

else nDelays (n-1) (delay x)

in nDelays 3 (fn x => x + 1) end

SML Type Checker Reports:

Error: right-hand-side of clause doesn’t agree with

function result type [circularity]
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expression: ’Z -> ’Z

result type: (unit -> ’Z) -> ’Z

in declaration:

nDelays = (fn n => (fn <pat> => <exp>))

Error: operator and operand don’t agree [literal]

operator domain: unit -> ’Z

operand: int -> int

in expression:

(nDelays 3) (fn x => x + 1)

Polymorphic recursion with ∀-types is not powerful enough to type this
example. To see why there is no ∀-type let us inspect the example. First, it
is easy to see that the type of delay is:

delay : ∀α.α → unit → α.

It is apparent that n has type int. Suppose next, that we give x type α. From
the then-branch we see that the return type of the function must be of type
α. So far we have assigned nDelays the following type:

nDelays : ∀α.int → α → α.

Next, according to the rule (If), we will make sure that the else-branch also has
type α. This is where the problem manifests. The first argument to nDelays,
n-1, clearly has type int. However, the second argument to nDelays, delay
x, has type unit → α which, according to the type previously assigned to
nDelays, means the else-branch has type unit → α.

Polymorphic recursion with intersection types is also not sufficient to type
this example. To see why, first observe that to type:

fn n => fn x => if n=0

then x

else nDelays (n-1) (delay x),

we require x to have an intersection type. In the then-branch, x must have the
same type as the result of nDelays which we will call τ . In the else-branch,
we require x to have a type with strictly fewer units than τ has, since the
call to delay will add one unit and nDelays does not accept arguments with
a greater number of units than its return type. Therefore by assigning the
following type to x:

x : α ∧ (unit → α),

we are able to derive the same type in both branches of the if-expression.

However, this presents a different problem. In order to type:

nDelays 3 (fn x => x + 1),
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we require nDelays to have the type:

int → (int → int) → τ.

but as a result of the subtyping relation rules, this type is not attainable if
we require the second argument of nDelays to have an intersection type. We
can see this from the following failed subtype derivation (where the boxed
judgement is the failure point).

int ≤ int
(S-Refl)

int → int ≤ ((int → int) ∧ . . .) σ ≤ σ
(S-Refl)

((int → int) ∧ . . .) → σ ≤ (int → int) → σ
(S-Fun)

int → (((int → int) ∧ . . .) → σ) ≤ int → ((int → int) → σ)
(S-Fun)

Therefore we cannot derive an intersection type for this example using our
system.

8 High-Order ∀-Polymorphism

In this section we describe the difference between our construction of S and
HM∀. We have chosen to disallow ∀-quantifiers anywhere inside a type. How-
ever, we allow ∧ to occur freely inside a type. At first glance, these choices
may seem biased toward the intersection type system. The rationalization
behind these choices was a decision to investigate the typability of programs
for which there is a known type inference algorithm that does not rely on any
type annotations. It is known how to infer types for high-rank uses of inter-
section types [14], but this is not the case for high-rank uses of ∀-types. This
being said, if we were to consider a system of ∀-types that allowed arbitrary
rank uses of ∀-types, then under this system we could type every example in
this report that S types.

9 Conclusion

In summary, we have shown several examples of programs that require poly-
morphic recursion. Each program is not typable in the traditional Hindley-
Milner system (HM). Some of the examples require ∧-types and others require
∀-types. Still others are not typable even with a combination of the two. We
have seen that an intersection type system (S) can type many of our examples
including Mycroft’s example. To the best of our knowledge System S is the
first type system that has been able to achieve this. Therefore, although a
finite width intersection type system is not able to type all possible polymor-
phic recursive programs, it can type a significant subset with the possibility
of decidable type inference.
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A Mycroft Typing Derivation in System S

Suppose we have the following types:

τint = int → int

τbool = bool → bool

τint list = int list → int list

τbool list = bool list → bool list

τ× = int list× bool list

τ∧ = (τint → τint list) ∧ (τbool → τbool list).

Also suppose we have the following context:

Γ = myMap : τ∧, sqList : τint list, compList : τbool list.

Finally, suppose we have the following terms:

M = fn f => fn l => if(null l) then l else cons (f (hd l)) (myMap f (tl l))

S = fn l => myMap (fn x => x ∗ x) l

C = fn l => myMap not l

E = (sqList (cons 2 (cons 4 nil)), compList (cons true (cons false nil))).

Then we have the following typing derivation:

98. τbool → τbool list ≤ τbool → τbool list (S-Refl)

97. τ∧ ≤ τbool → τbool list (S-∧) from 98

96. Γ, f : τbool, l : bool list ` myMap : τ∧ (∧-Var)

95. Γ, f : τbool, l : bool list ` l : bool list (∧-Var)

94. Γ, f : τbool, l : bool list ` hd : bool list → bool (∧-Const)

93. τint → τint list ≤ τint → τint list (S-Refl)

92. τ∧ ≤ τint → τint list (S-∧) from 93

91. Γ, f : τint, l : int list ` myMap : τ∧ (∧-Var)
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90. Γ, f : τint, l : int list ` l : int list (∧-Var)

89. Γ, f : τint, l : int list ` hd : int list → int (∧-Const)

88. Γ, f : τbool, l : bool list ` l : bool list (∧-Var)

87. Γ, f : τbool, l : bool list ` tl : τbool list (∧-Const)

86. Γ, f : τbool, l : bool list ` f : τbool (∧-Var)

85. Γ, f : τbool, l : bool list ` myMap : τbool → τbool list (Sub) from 96, 97

84. Γ, f : τbool, l : bool list ` hd l : bool (App) from 94, 95

83. Γ, f : τbool, l : bool list ` f : τbool (∧-Var)

82. Γ, f : τint, l : int list ` l : int list (∧-Var)

81. Γ, f : τint, l : int list ` tl : τint list (∧-Const)

80. Γ, f : τint, l : int list ` f : τint (∧-Var)

79. Γ, f : τint, l : int list ` myMap : τint → τint list (Sub) from 91, 92

78. Γ, f : τint, l : int list ` hd l : int (App) from 89, 90

77. Γ, f : τint, l : int list ` f : τint (∧-Var)

76. Γ, f : τbool, l : bool list ` tl l : bool list (App) from 87, 88

75. Γ, f : τbool, l : bool list ` myMap f : τbool list (App) from 85, 86

74. Γ, f : τbool, l : bool list ` f (hd l) : bool (App) from 83, 84

73. Γ, f : τbool, l : bool list ` cons : bool → τbool list (∧-Const)

72. Γ, f : τint, l : int list ` tl l : int list (App) from 81, 82

71. Γ, f : τint, l : int list ` myMap f : τint list (App) from 79, 80

70. Γ, f : τint, l : int list ` f (hd l) : int (App) from 77, 78

69. Γ, f : τint, l : int list ` cons : int → τint list (∧-Const)

68. Γ, l : int list, x : int ` x : int (∧-Var)

67. Γ, l : int list, x : int ` ∗ : int → τint (∧-Const)

66. Γ, f : τbool, l : bool list ` myMap f (tl l) : bool list (App) from 75, 76

65. Γ, f : τbool, l : bool list ` cons (f (hd l)) : τbool list (App) from 73, 74

64. Γ, f : τbool, l : bool list ` l : bool list (∧-Var)
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63. Γ, f : τbool, l : bool list ` null : bool list → bool (∧-Const)

62. Γ, f : τint, l : int list ` myMap f (tl l) : int list (App) from 71, 72

61. Γ, f : τint, l : int list ` cons (f (hd l)) : τint list (App) from 69, 70

60. Γ, f : τint, l : int list ` l : int list (∧-Var)

59. Γ, f : τint, l : int list ` null : int list → bool (∧-Const)

58. Γ, l : int list, x : int ` x : int (∧-Var)

57. Γ, l : int list, x : int ` ∗x : τint (App) from 67, 68

56. Γ ` 4 : int (∧-Const)

55. Γ ` cons : (∧-Const)

int → int list → int list

54. Γ ` false : bool (∧-Const)

53. Γ ` cons : (∧-Const)

bool → bool list → bool list

52. Γ, f : τbool, l : bool list ` cons (f (hd l))

(myMap f (tl l)) : bool list (App) from 65, 66

51. Γ, f : τbool, l : bool list ` l : bool list (∧-Var)

50. Γ, f : τbool, l : bool list ` (null l) : bool (App) from 63, 64

49. Γ, f : τint, l : int list ` cons (f (hd l)) (App) from 61, 62

(myMap f (tl l)) : int list

48. Γ, f : τint, l : int list ` l : int list (∧-Var)

47. Γ, f : τint, l : int list ` (null l) : bool (App) from 59, 60

46. Γ, l : int list, x : int ` x ∗ x : int (App) from 57, 58

45. τint → τint list ≤ (S-Refl)

τint → τint list

44. τ∧ ≤ τint → τint list (S-∧) from 45

43. Γ, l : int list ` myMap : τ∧ (∧-Var)

42. τbool → τbool list ≤ (S-Refl)
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τbool → τbool list

41. τ∧ ≤ τbool → τbool list (S-∧) from 42

40. Γ, l : bool list ` myMap : τ∧ (∧-Var)

39. Γ ` nil : int list (∧-Const)

38. Γ ` cons 4 : (App) from 55, 56

int list → int list

37. Γ ` 2 : int (∧-Const)

36. Γ ` cons : (∧-Const)

int → int list → int list

35. Γ ` nil : bool list (∧-Const)

34. Γ ` cons false : (App) from 53, 54

bool list → bool list

33. Γ ` true : bool (∧-Const)

32. Γ ` cons : (∧-Const)

bool → bool list → bool list

31. Γ, f : τbool, l : bool list ` if(null l) then l (If) from 50, 51, 52

else cons (f (hd l))

(myMap f (tl l)) : bool list

30. Γ, f : τint, l : int list ` if(null l) then l (If) from 47, 48, 49

else cons (f (hd l))

(myMap f (tl l)) : int list

29. Γ, l : int list ` fn x => x ∗ x : τint (Abs) from 46

28. Γ, l : int list ` myMap : τint → τint list (Sub) from 43, 44

27. Γ, l : bool list ` not : τbool (∧-Const)

26. Γ, l : bool list ` myMap : τbool → τbool list (Sub) from 40, 41

25. Γ ` cons 4 nil : int list (App) from 38, 39

24. Γ ` cons 2 : int list → int list (App) from 36, 37
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23. Γ ` cons false nil : bool list (App) from 34, 35

22. Γ ` cons true : (App) from 32, 33

bool list → bool list

21. Γ, f : τbool ` fn l => if(null l) then l (Abs) from 31

else cons (f (hd l))

(myMap f (tl l)) : τbool list

20. Γ, f : τint ` fn l => if(null l) then l (Abs) from 30

else cons (f (hd l))

(myMap f (tl l)) : τint list

19. Γ, l : int list ` l : int list (∧-Var)

18. Γ, l : int list ` myMap (fn x => x ∗ x) : τint list (App) from 28, 29

17. Γ, l : bool list ` l : bool list (∧-Var)

16. Γ, l : bool list ` myMap not : τbool list (App) from 26, 27

15. Γ ` cons 2 (cons 4 nil) : int list (App) from 24, 25

14. Γ ` sqList : τint list (∧-Var)

13. Γ ` cons true (cons false nil) : (App) from 22, 23

bool list

12. Γ ` compList : τbool list (∧-Var)

11. Γ ` fn f => fn l => (Abs) from 21

if(null l) then l

else cons (f (hd l))

(myMap f (tl l)) : τbool → τbool list

10. Γ ` fn f => fn l => (Abs) from 20

if(null l) then l

else cons (f (hd l))

(myMap f (tl l)) : τint → τint list

9. Γ, l : int list ` myMap (fn x => x ∗ x) l : int list (App) from 18, 19
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8. Γ, l : bool list ` myMap not l : bool list (App) from 16, 17

7. Γ ` sqList (App) from 14, 15

(cons 2 (cons 4 nil)) : int list

6. Γ ` compList (App) from 12, 13

(cons true (cons false nil)) :

bool list

5. Γ ` M : τ∧ (∧) from 10, 11

4. Γ ` S : τint list (Abs) from 9

3. Γ ` C : τbool list (Abs) from 8

2. Γ ` E : τ× (Pair) from 6, 7

1. ` let val rec myMap = M (∧-Rec) from 2, 3, 4, 5

and sqList = S

and compList = C in E end : τ×

B Proof of Soundness of a Subsystem of S

In this section our goal is to show the soundness of a subsystem of S. We
choose to eliminate the pair and conditional rules of S for the simplicity of
the proof. We do not anticipate any difficulties in the proof of soundness if
these additional rules were included. To achieve soundness we first define the
operational semantics of our system. After this we prove the Inversion and
Substitution Lemmas which allow us to show Subject Reduction holds.

Before we define the operational semantics of our system let us define the
expressions and values of our system.

M, N ∈ Expressions ::= x | c | fn x => M | M N | let val x = M in N end |

let val rec x1 = M1 and . . . and xn = Mn in N end

V ∈ Values ::= x | fn x => M

Now we review the static semantics of our system.
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Subsystem of System S Typing Rules:

type(c) = τ

∆ ` c : τ
(∧-Const)

(τ closed)

∆(x) = τ

∆ ` x : τ
(∧-Var)

∆, x : τ ` M : τ ′

∆ ` fn x => M : τ → τ ′
(Abs) ∆ ` M : τ → τ ′ ∆ ` N : τ

∆ ` MN : τ ′
(App)

∆ ` M : τ ′ ∆, x : τ ′ ` N : τ

∆ ` let x = M in N end : τ
(∧-Let)

∆, x1 : τ1, . . . , xn : τn ` N : τ
∆, x1 : τ1, . . . , xn : τn ` Mp : τp

∆ ` let val rec x1 = M1 and . . .
and xn = Mn in N end : τ

(∧-Rec)

(1 ≤ p ≤ n)

∆ ` M : τi i ∈ I
∆ ` M : ∧i∈I τi

(∧)
(size(I) ≥ 2), (size(I) is finite)

∆ ` M : τ τ ≤ τ ′

∆ ` M : τ ′
(Sub)

τ ≤ τ
(S-Refl)

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
(S-Trans)

τ1 ≤ τ ′1 τ ′2 ≤ τ2

τ ′1 → τ ′2 ≤ τ1 → τ2
(S-Fun)

τi ≤ τ ′i i ∈ I I ⊆ J

∧i∈J τi ≤ ∧i∈I τ ′i
(S-∧)

Below are the dynamic semantics our subsystem.
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Subsystem of System S Operational Semantics:

M ⇒ M ′

M N ⇒ M ′ N
(E-App1)

N ⇒ N ′

V N ⇒ V N ′ (E-App2)

(fn x => M) V ⇒ M [x := V ]
(E-AppAbs)

M ⇒ M ′

let val x = M in N end⇒ let val x = M ′ in N end
(E-Let1)

let val x = V in N end⇒ N [x := V ]
(E-Let2)

Mp[x1 := M1] . . . [xn := Mn] ⇒ M ′
p

let val rec x1 = V1 and . . . and xp = Mp and . . .
and xn = Mn in N end⇒
let val rec x1 = V1 and . . . and xp = M ′

p and . . .
and xn = Mn in N end

(E-Rec1)

(1 ≤ p ≤ n)

let val rec x1 = V1 and . . . and xn = Vn in N end⇒
N [x1 := V ′

1 ] . . . [xn := V ′
n]

(E-Rec2)

Lemma B.1 (Inversion of the Subtype Relation)
If τ1 → τ2 ≤ τ ′1 → τ ′2, then τ ′1 ≤ τ1 and τ2 ≤ τ ′2.

Proof. There are three possible subtyping rules which may have been the
last rule applied in the subtyping derivation of the judgement τ1 → τ2 ≤
τ ′1 → τ ′2. If the rule (S-Fun) was last applied then the result is obvious. If
the rule (S-Refl) rule was last applied then the result can be obtained by
straightforward induction on the premise of the rule. If the rule (S-Trans) was
last applied then again we proceed by induction on the premises of the rule,
but we must also apply the (S-Trans) rule to these results. 2
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Lemma B.2 (Inversion) If ∆ ` fn x => M : τ1 → τ2, then
∆, x : τ ′1 ` M : τ2 and τ1 ≤ τ ′1.

Proof. By inspection of the inference rules we observe that the last rule
applied in the typing derivation of the judgement ∆ ` fn x => M : τ1 → τ2

can only be one of two possibilities. We proceed by case analysis.

case: D =

∆, x : τ1 ` M : τ2

∆ ` fn x => M : τ1 → τ2
(Abs)

Then we have ∆, x : τ1 ` M : τ2 where τ ′1 = τ1 and τ1 ≤ τ1 by (S-Refl).

case: D =

∆ ` fn x => M : τ ′1 → τ ′2 τ ′1 → τ ′2 ≤ τ1 → τ2

∆ ` fn x => M : τ1 → τ2
(Sub)

τ1 ≤ τ ′1 and τ ′2 ≤ τ2 Subtype Inversion Lemma on

τ ′1 → τ ′2 ≤ τ1 → τ2

∆, x : τ ′′1 ` M : τ ′2 and τ ′1 ≤ τ ′′1 I.H. on ∆ ` fn x => M : τ ′1 → τ ′2

τ1 ≤ τ ′′1 (S-Trans) applied to τ1 ≤ τ ′1 and

τ ′1 ≤ τ ′′1

∆, x : τ ′′1 ` M : τ2 (Sub) applied to ∆, x : τ ′′1 ` M : τ ′2

and τ ′2 ≤ τ2

2

Lemma B.3 (Weakening) If ∆ ` M : τ , then ∆, ∆′ ` M : τ , provided that
∆, ∆′ is a valid context.

Proof. The proof proceeds by straightforward induction on the structure of
the derivation D :: ∆ ` M : τ . The only case in which the context is examined
is when the rule (Var) is the last rule applied in the derivation. It should be
clear that (Var) is only applicable if the context ∆ contains the assignment x :
τ . And by extending the context with additional, non-conflicting assignments
we do not alter this property. 2

Lemma B.4 (Substitution) If ∆ ` N : τ and ∆, x : τ, ∆′ ` M : τ ′, then
∆, ∆′ ` M [x := N ] : τ ′.

Proof. By structural induction on the derivation D :: ∆, x : τ, ∆′ ` M : τ ′.
We show only a few cases, as the rest follow the same pattern.

case: D =

∆, x : τ, ∆′(y) = τ ′

∆, x : τ, ∆′ ` y : τ ′
(∧-Var)

Depending on whether x = y we have two subcases.

subcase: x = y and τ = τ ′
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x[x := N ] = N Definition of Substitution

∆, ∆′ ` N : τ Weakening Lemma on assumption ∆ ` N : τ

subcase: x 6= y

y[x := N ] = y Definition of Substitution

∆, ∆′ ` y : τ ′ Assumptions ∆, x : τ, ∆′ ` y : τ ′ and x 6= y

case: D =

∆, x : τ, ∆′ ` M1 : τ ′1 → τ ′ ∆, x : τ, ∆′ ` M2 : τ ′1
∆, x : τ, ∆′ ` M1M2 : τ ′

(App)

Depending on whether x ∈ FV(M1) we have two subcases.

subcase: x ∈ FV(M1)

Depending on whether x ∈ FV(M2) we have two subsubcases.

subsubcase: x ∈ FV(M2)

∆, ∆′ ` M1[x := N ] : τ ′1 → τ ′ I.H. on

∆, x : τ, ∆′ ` M1 : τ ′1 → τ ′

∆, ∆′ ` M2[x := N ] : τ ′1 I.H. on ∆, x : τ, ∆′ ` M2 : τ ′1

∆, ∆′ ` M1[x := N ]M2[x := N ] : τ ′ (App) applied to

∆, ∆′ ` M1[x := N ] : τ ′1 → τ ′ and

∆, ∆′ ` M2[x := N ] : τ ′1

∆, ∆′ ` (M1M2)[x := N ] : τ ′ Definition of Substitution

subsubcase: x 6∈ FV(M2) and ∆, ∆′ ` M2 : τ ′1

∆, ∆′ ` M1[x := N ] : τ ′1 → τ ′ I.H. on

∆, x : τ, ∆′ ` M1 : τ ′1 → τ ′

∆, ∆′ ` (M1[x := N ])M2 : τ ′ (App) applied to

∆, ∆′ ` M1[x := N ] : τ ′1 → τ ′ and

∆, ∆′ ` M2 : τ ′1

∆, ∆′ ` (M1M2)[x := N ] : τ ′ Definition of Substitution

subcase: x 6∈ FV(M1) and ∆, ∆′ ` M1 : τ ′1 → τ ′

Depending on whether x ∈ FV(M2) we have two subsubcases.

subsubcase: x ∈ FV(M2)
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∆, ∆′ ` M2[x := N ] : τ ′1 I.H. on ∆, x : τ, ∆′ ` M2 : τ ′1

∆, ∆′ ` M1(M2[x := N ]) : τ ′ (App) applied to

∆, ∆′ ` M1 : τ ′1 → τ ′ and

∆, ∆′ ` M2[x := N ] : τ ′1

∆, ∆′ ` (M1M2)[x := N ] : τ ′ Definition of Substitution

subsubcase: x 6∈ FV(M2) and ∆, ∆′ ` M2 : τ ′1

(M1M2)[x := N ] = M1M2 Definition of Substitution

∆, ∆′ ` M1M2 : τ ′ Assumptions ∆, x : τ, ∆′ ` M1M2 : τ ′, x 6∈ FV(M1),

and x 6∈ FV(M2)

The remaining cases are similar. 2

Theorem B.5 (Subject Reduction) If ∆ ` M : τ and M ⇒ M ′, then
∆ ` M ′ : τ .

Proof. By structural induction on the derivation of D :: ∆ ` M : τ .

case: D =

type(c) = τ

∆ ` c : τ
(∧-Const)

Can’t happen because there are no evaluation rules for constants.

case: D =

∆(x) = τ

∆ ` x : τ
(∧-Var)

Can’t happen because there are no evaluation rules for variables.

case: D =

∆, x : τ ` M : τ ′

∆ ` fn x => M : τ → τ ′
(Abs)

Can’t happen because there are no evaluation rules for abstractions.

case: D =
∆ ` M : τ → τ ′ ∆ ` N : τ

∆ ` MN : τ ′
(App)

From the operational semantics there are three ways we can derive M ⇒ M ′.
We proceed by cases.

subcase: M ⇒ M ′

M N ⇒ M ′ N (E-App1)

∆ ` M ′ : τ → τ ′ I.H. on ∆ ` M : τ → τ ′ and M ⇒ M ′

∆ ` M ′N : τ ′ (App) applied to ∆ ` M ′ : τ → τ ′ and ∆ ` N : τ

subcase: M is a value and N ⇒ N ′
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M N ⇒ M N ′ (E-App2)

∆ ` N ′ : τ I.H. on ∆ ` N : τ and N ⇒ N ′

∆ ` MN ′ : τ ′ (App) applied to ∆ ` M : τ → τ ′ and ∆ ` N ′ : τ

subcase: M = fn x => M ′ and N is a value

(fn x => M ′) N ⇒ M ′[x := N ] (E-AppAbs)

∆, x : τ ′′ ` M ′ : τ ′, where τ ≤ τ ′′ Inversion Lemma on

∆ ` fn x => M ′ : τ → τ ′

∆ ` N : τ ′′ (Sub) applied to ∆ ` N : τ

and τ ≤ τ ′′

∆ ` M ′[x := N ] : τ ′ Substitution Lemma on

∆, x : τ ′′ ` M ′ : τ ′ and ∆ ` N : τ ′′

case: D =

∆ ` M : τ ′ ∆, x : τ ′ ` N : τ

∆ ` let x = M in N end : τ
(∧-Let)

From the operational semantics there are two ways we can derive M ⇒ M ′.
We proceed by cases.

subcase: M ⇒ M ′

let val x = M in N end ⇒

let val x = M ′ in N end (E-Let1)

∆ ` M ′ : τ ′ I.H. on ∆ ` M : τ ′ and M ⇒ M ′

∆ ` let val x = M ′ in N end : τ (∧-Let) applied to ∆ ` M ′ : τ ′ and

∆, x : τ ′ ` N : τ

subcase: M is a value

let val x = M in N end ⇒ N [x := M ] (E-Let2)

∆ ` N [x := M ] : τ Substitution Lemma on

∆, x : τ ′ ` N : τ and

∆ ` M : τ ′

case: D =

∆, x1 : τ1, . . . , xn : τn ` N : τ ∆, x1 : τ1, . . . , xn : τn ` Mp : τp

∆ ` let val rec x1 = M1 and . . . and xn = Mn in N end : τ
(∧-Rec)

From the operational semantics there are two ways we can derive M ⇒ M ′.
We proceed by cases.

subcase: Mp ⇒ M ′
p, where 1 ≤ p ≤ n
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let val rec x1 = M1 and . . . (E-Rec1)

and xp = Mp and . . .

and xn = Mn in N end ⇒

let val rec x1 = M1 and . . .

and xp = M ′
p and . . .

and xn = Mn in N end

∆, x1 : τ1, . . . , xn : τn ` M ′
p : τp I.H. on

∆, x1 : τ1, . . . , xn : τn ` Mp : τp

and Mp ⇒ M ′
p

∆ ` let val rec x1 = M1 and . . . (∧-Rec) applied to

∆, x1 : τ1, . . . , xn : τn ` M ′
p : τp and

and xp = M ′
p and . . . ∆, x1 : τ1, . . . , xn : τn ` N : τ

and xn = Mn in N end : τ

subcase: M1 . . . Mn are all values.

let val rec x1 = M1 and . . . (E-Rec2)

and xn = Mn in N end ⇒

N [x := M1] . . . [x := Mn]

∆ ` N [x := M1] . . . [x := Mn] : τ By n applications of the

Substitution Lemma

case: D =
∆ ` M : τi i ∈ I
∆ ` M : ∧i∈I τi

(∧)

∆ ` M ′ : τi i ∈ I I.H. on ∆ ` M : τi i ∈ I and M ⇒ M ′

∆ ` M ′ : ∧i∈I τi (∧) applied to ∆ ` M ′ : τi i ∈ I

case: D =
∆ ` M : τ τ ≤ τ ′

∆ ` M : τ ′
(Sub)

∆ ` M ′ : τ I.H. on ∆ ` M : τ and M ⇒ M ′

∆ ` M ′ : τ ′ (Sub) applied to ∆ ` M ′ : τ and τ ≤ τ ′

2
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